Langsung ke konten utama

Barisan dan Deret

 𝘽𝙖𝙧𝙞𝙨𝙖𝙣 𝙙𝙖𝙣 𝘿𝙚𝙧𝙚𝙩



𝘼. 𝘽𝙖𝙧𝙞𝙨𝙖𝙣 𝙙𝙖𝙣 𝘿𝙚𝙧𝙚𝙩 𝙖𝙧𝙞𝙩𝙢𝙖𝙩𝙞𝙠𝙖

  Barisan aritmetika merupakan barisan bilangan yang memiliki beda atau selisih tetap antara dua suku yang berurutan.

Contoh Barisan Aritmetika:


Rumus untuk menentukan suku ke-n dari barisan aritmetika:



Rumus untuk mencari beda pada barisan aritmetika:









Contoh deret aritmetika:

2 + 4 + 6 + 8 + 10 + …

24 + 20 + 16 + 12 + …

Rumus jumlah n suku pertama deret aritmetika:












Contoh :

Diketahui sebuah barisan aritmetika 15, 19, 23, 27, 31, … .

a. Tentukan suku ke 25!

b. Tentukan 10 suku pertama!

Pembahasan:











𝘽. 𝘽𝙖𝙧𝙞𝙨𝙖𝙣 𝙙𝙖𝙣 𝘿𝙚𝙧𝙚𝙩 𝙂𝙚𝙤𝙢𝙚𝙩𝙧𝙞

  Barisan geometri merupakan barisan bilangan dimana dua suku yang berurutan memiliki perbandingan yang sama. Perbandingan pada barisan geometri disebut sebagai rasio (r).


Contoh barisan geometri:

Rumus untuk menentukan suku ke-n dari barisan geometri:


Rumus untuk mencari rasio pada barisan geometri:










Deret geometri merupakan hasil penjumlahan pada barisan geometri. Rumus deret hanya menjumlahkan suku-suku pada barisan geometri hanya sampai suku yang diperintahkan saja.


Contoh deret geometri:


2 + 4 + 8 + 16 + 32 + …


200 + 100 + 50 + 25 + …


Rumus jumlah n suku pertama deret geometri:



















Contoh :

Diketahui sebuah barisan geometri berikut:

3, 12, 48, 192, …

a. Tentukan suku ke-10 dari barisan geometri tersebut!
b. Tentukan jumlah 5 suku pertama dari barisan geometri tersebut!

Pembahasan:

) barisan dan deret aritmatika

Barisan dan deret ini tidak bisa dipisahkan karena memiliki keterkaitan satu sama lainnya. Sederhananya, barisan artimetika adalah bilangan dengan pola yang tetap berdasarkan operasi penjumlahan dan pengurangan. Sementara itu, deret aritmetika adalah jumlah n suku pertama barisan aritmetika.

Aritmetika (kadang salah dieja sebagai aritmatika, berasal dari bahasa Yunani αριθμός – arithmos = angka) atau dulu disebut ilmu hitung merupakan cabang (atau pendahulu) matematika yang mempelajari operasi dasar bilangan. Oleh orang awam, kata “aritmetika” sering dianggap sebagai sinonim dari teori bilangan. Silakan lihat angka untuk mengetahui lebih dalam tentang teori bilangan.

Barisan aritmetika ini dapat dinyatakan dengan rumus sebagai berikut.

a

a+b 

a+2b

a+3b

Lebih lanjut, selisih antara nilai suku-suku saling berdekatan dan selalu sama, yaitu b. Misalnya:

Un – U(n-1) = b

Sebagai contoh baris 1, 3, 5, 7, 9, merupakan baris aritmetika dengan nilai:

b = (9 – 7) = (7 – 5) = (5 – 3) = (3 – 1) = 2

Sementara itu, deret aritmetika adalah suatu penjumlahan antar suku-suku dari sebuah barisan aritmetika. Untuk penjumlahan dari suku-suku pertama hingga suku ke-n barisan aritmetika tersebut bisa dihitung sebagai:

Sn = U1 + U2 + U3 + …. + U(n-1)

atau

Sn = a + (a + b) + (a + 2b) + …. + (a + (n – 2)b) + (a + (n – 1)b)

Apabila yang diketahui hanya nilai a, suku pertama serta nilainya merupakan suku ke-n, jadi nilai deret aritmetikanya adalah:

Sn = n/2(a + Un)

1. Beda : Beda, dalam suku barisan aritmetika, merupakan selisih dua suku. Misal b adalah beda antar suku, secara matematis dapat ditulis sebagai berikut b = an - an - 1

2. Suku tengah ialah suku yang berada di tengah-tengah barisan aritmetika jika banyaknya barisan suku berupa ganjil.

Rumus barisan aritmatika

Rumus untuk menentukan suku ke-n dari barisan aritmetika:

Un = a + (n – 1)b atau Un = Un-1 + b

Selain mencari rumus suku ke-n, adapun rumus yang digunakan untuk mencari nilai tengah dari sebuah barisan aritmetika, yakni:

Ut = ½ (a + Un)

Keterangan:
Un = suku ke-n
a = U1
Un-1 = suku sebelum suku ke-n
b = beda

Rumus derer aritmatika

Untuk lebih jelasnya, berikut rumus deret aritmetika, yakni:

Sn = n/2 (a + Un) = n/2(2a + (n – 1)b)

Berdasarkan rumus tersebut, dapat ditemukan suku ke-n dengan cara berikut ini, yaitu:

Un = Sn – Sn-1

Keterangan:
Un = suku ke-n
a = U1
Un-1 = suku sebelum suku ke-n
b = beda

Contoh soal barisan dan deret aritmatika

Soal 1
Suatu bentuk deret aritmetika adalah 5, 15, 25, 35, …. Berapakah jumlah 10 suku pertama dari deret aritmetika tersebut?

Diketahui:
n = 10
U1 = a = 5
b = 15 – 5 = 25 – 15 = 10

Jawaban:
Sn = (2a + (n-1) b )
S10 = ( 2. 5 + (10 -1) 10)
= 5 ( 10 + 9.10)
= 5 x 100 = 500
Jadi, jumlah S10 dalam deret aritmetika tersebut, yakni 500.

Soal 2
Diketahui suatu deret aritmetika dengan suku pertamanya adalah 10 dan suku ke-enam adalah 20. Lalu, tentukan:

Beda deret aritmetika tersebut.
Tuliskan deret aritmetika tersebut.
Jumlah enam suku pertama dari deret aritmetika tersebut.

Jawaban:

Beda deret aritmetika tersebut, yaitu:
Un = a+(n-1)b
U6= a+(6-1) b
20= 10+(5)b
b= 10/5 = 2
Jadi, beda deret aritmetika tersebut adalah 2.

Deret aritmetikanya, yaitu:
10+12+14+16+18+20+…+Un

Jumlah suku keenam, S6 adalah:
Sn =n/2 (2a+(n-1) b)
S6= 6/2 (2.10+(6-1) 2)
=3(20+10)
=90
Jadi, jumlah suku keenam deret tersebut adalah 90.

Soal 3
Suku ke-40 dari barisan 7, 5, 3, 1, … adalah …

Diketahui:
a = 7
b = -2

Jawaban:
Un = a + (n – 1)b
U40 = 7 + (40-1)(-2)
= 7 + 39 . (-2)
= 7 + (-78)
= – 71
Jadi, suku ke-40 barisan aritmetika tersebut adalah –71.

B) barisan dan deret geometri

Barisan geometri adalah pola bilangan atau urutan bilangan yang memiliki perbandingan atau rasio tetap antarsukunya. Contohnya seperti pada pembelahan amoeba, di mana satu amoeba akan membelah diri menjadi dua, dua amoeba akan membelah diri menjadi empat, dan seterusnya. Jika dinyatakan sebagai barisan geometri, akan menjadi 1, 2, 4, 8, 16, 32, dan seterusnya. Bilangan 1, 2, 4, 8, …, n disebut sebagai suku atau penyusun barisan. Secara matematis, suku dilambangkan sebagai Un (suku ke-n). Sementara itu, nilai perbandingan antara Un+1 dan Un disebut sebagai rasio. Secara matematis, rasio dilambangkan sebagai r. nilai rasio tidak selalu r > 1, ya. Jika nilai sukunya semakin mengecil, sudah pasti rentang rasionya r < 1. Suku pertama (U1) pada barisan geometri dilambangkan sebagai a.

Rumus barisan geometri

Secara matematis, rumus suku ke-n barisan geometri adalah sebagai berikut.

Dengan ketentuan:

Un = suku ke-n;

a = suku ke-1 atau U1

n = letak suku yang dicari; dan

r = rasio atau perbandingan antara Un+1 dan Un.

Rumus deret geometri untuk r > 1

Jika r > 1, rumus deret geometrinya dinyatakan sebagai berikut.

Dengan:

Sn = jumlah n suku barisan geometri;

a = suku ke-1 atau U1

n = letak suku yang dicari; dan

r = rasio atau perbandingan antara Un+1 dan Un.

Rumus deret geometri untuk r <1 

Jika r > 1, rumus deret geometrinya dinyatakan sebagai berikut.

Dengan:

Sn = jumlah n suku barisan geometri;

a = suku ke-1 atau U1

n = letak suku yang dicari; dan

r = rasio atau perbandingan antara Un+1 dan Un.

Rumus deret geometri tak hingga konvergen

Deret geometri tak hingga konvergen adalah jumlah barisan geometri yang banyaknya tak hingga dengan nilai yang terus mengecil. Secara matematis, rumus deret geometri tak hingga konvergen adalah sebagai berikut.

Contoh deret geometri tak hingga konvergen adalah saat kamu menjatuhkan bola dari ketinggian tertentu. Semakin lama, ketinggian bola akan berkurang hingga kemudian berhenti.

Rumus deret geometri tak hingga divergen

Divergen artinya menyebar, sehingga deret geometri tak hingga divergen adalah jumlah barisan yang banyaknya tak hingga dengan nilai yang terus membesar. Oleh karena nilainya yang terus membesar tanpa ada batas tertentu, maka rumus deret geometri tak hingga divergen tidak bisa ditentukan karena S = ∞.

Contoh Soal Barisan Geometri

Diketahui suatu deret geometri berikut.

Berapakah nilai suku ke-15?

Pembahasan:

Mula-mula, kamu harus mencari rasio dari barisan pada soal.

Dengan demikian, suku ke-15 bisa dicari dengan rumus berikut.

Jadi, suku ke-10 nilainya adalah x16.384.

Contoh Soal Deret Geometri

Farhan memiliki seutas tali. Lalu, tali tersebut dipotong menjadi 5 bagian dengan ketentuan, setiap potongan merupakan kelipatan potongan sebelumnya dan nilai kelipatan itu selalu tetap. Potongan tali yang paling pendeknya adalah 3 cm dan potongan tali terpanjangnya 243 cm. Berapakah panjang tali mula-mula?

Pembahasan:

Diketahui:

U1 = a = 3 cm

U5 = 243

Ditanya: Sn =…?

Jawab:

Mula-mula, kamu harus mencari rasio setiap potongan tali tersebut menggunakan SUPER “Solusi Quipper” berikut.

Lalu, tentukan panjang tali menggunakan rumus deret geometri untuk r > 1.

Jadi, panjang tali Farhan mula-mula adalah 363 cm atau 3,63 m.

C) bunga, penyusutan, pertumbuhan dan peluruhan

r = 2 %

t =  4 bulan

Sehingga, besarnya bunga untuk setiap bulan dihitung dengan:

dan jumlah uang yang harus dikembalikan setelah 4 bulan;


Bunga majemuk

Bunga majemuk yaitu, bunga yang dihitung menurut jumlah modal yang dipakai ditambahkan dengan akumulasi bunga yang telah terjadi. bunga majemuk ini sering disebut dengan bunga berbunga, bunga majemuk dapat dihitung dengan menggunakan deret geometri.

Misalkan, Modal Sejumlah M0, akan diberlakukan bunga majemuk,dengan tingkat suku bunga i (dalam persentase) per periode waktu. Besarnya modal saat periode ke-t (Mt) bisa dihitung dengan cara:

Sehingga, rumus untuk besar modal pada periode ke-t dengan bunga majemuk yaitu;

keterangan;

Mt = modal pada akhir periode – t

M0 = modal awal

i = tingkat suku bunga

t = periode

Contoh soal

Sebuah bank swasta memberikan pinjaman kepada nasabahnya sebesar Rp. 6.000.000 dengan perhitungan bunga majemuk 3% per tahun. berapakah modal yang harus dikembalikan nasabah tersebut setelah 1 tahun?

Jawab:

M0 = Rp. 6.000.000

i = 3% = 0,03

t = 12 bulan

Modal yang harus dikembalikan setelah 1 tahun /12 bulan yaitu:


geometri (eksponensial). Peluruhan misalnya, peluruhan zat radioaktif dan penurunan harga jual mobil.

Rumus peluruhan linear;

Rumus peluruhan eksponensial;

Keterangan;

Pn = nilai besaran setelah n periode

P0 = nilai besaran pada awal periode

b = tingkat peluruhan

n = banyaknya periode pertumbuhan

Contoh Soal

Sebuah bahan radioaktif, mulanya berukuran 150 gram mengalami reaksi kimia sehingga mengalami penyusutan sebanyak 3% dari ukuran sebelumnya setiap 4 jam secara eksponensial. Tentukanlah ukuran bahan radioaktif tersebut setelah 1 hari!

Jawab:

P0 = 100 gram

b = 3% = 0,03

Setelah 1 hari, maka ukuran radioaktif tersebut;


Komentar

Postingan populer dari blog ini

DETERMINAN DAN INVERS MATRIKS

  Determinan dan Invers matriks 𝘿𝙚𝙩𝙚𝙧𝙢𝙞𝙣𝙖𝙣 𝙙𝙖𝙣 𝙄𝙣𝙫𝙚𝙧𝙢𝙖𝙩𝙧𝙞𝙠𝙨 𝙤𝙧𝙙𝙤 2𝙭2 𝙙𝙖𝙣 𝙢𝙖𝙩𝙧𝙞𝙠𝙨 𝙤𝙧𝙙𝙤 2𝙭3 •Determinan Matriks Determinan suatu matriks didefinisikan sebagai selisih antara perkalian elemen-elemen pada diagonal utama dengan perkalian elemen-elemen pada diagonal sekunder.  Determinan matriks hanya dapat ditentukan pada  matriks persegi . Determinan dari matriks A dapat dituliskan det(A) atau |A|. Untuk menentukan determinan dari sebuah matriks, terdapat dua aturan berdasarkan ordonya, yaitu ordo 2x2 dan ordo 3x3. •Determinan  Matriks Ordo 2x2 Determinan matriks persegi dengan ordo 2x2 dapat dihitung dengan cara berikut: •Determinan  Matriks Ordo 3x3 Determinan matriks persegi dengan ordo 3x3 dapat dihitung dengan menggunakan dua cara, yaitu kaidah Sarrus dan ekspansi kofaktor. Namun, cara yang paling sering digunakan dalam menentukan determinan matriks ordo 3x3 adalah dengan kaidah Sarrus. Langkah-langkah mencari determ...

MATRIKS

  MATRIKS   𝙈𝙚𝙣𝙪𝙧𝙪𝙩 𝙬𝙞𝙠𝙞𝙥𝙚𝙙𝙞𝙖  matriks adalah susunan bilangan, simbol, atau ekspresi yang disusun dalam baris dan kolom sehingga membentuk suatu bangun persegi. Sebagai contoh, matriks di bawah ini adalah matriks berukuran 2 × 3: karena terdiri dari dua baris dan tiga kolom.   𝗠𝗲𝗻𝘂𝗿𝘂𝘁 𝗮𝗿𝘁𝗶𝗸𝗲𝗹 lain Matriks di artikan sebagai susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehingga membentuk jajaran persegi panjang.  𝗝𝗘𝗡𝗜𝗦-𝗝𝗘𝗡𝗜𝗦 𝗠𝗔𝗧𝗥𝗜𝗞𝗦   Berikut ini merupakan jenis-jenis matriks diantaranya yaitu sebagai berikut: a. Matriks Baris Matriks baris adalah suatu matriks yang terdiri dari satu baris aja.  b. Matriks Kolom Kebalikannya dari matriks baris, matriks kolom adalah suatu matriks yang terdiri dari satu kolom aja. c. Matriks Persegi Matriks persegi adalah suatu matriks yang memiliki jumlah baris dan kolom sama. d. Matriks Diagonal Matriks diagonal adala...

INTEGRAL FUNGSI ALJABAR

  𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝗹, 𝗳𝘂𝗻𝗴𝘀𝗶 𝗮𝗹𝗷𝗮𝗯𝗮𝗿 INTEGRAL TAK TENTU   Integral merupakan anti turunan atau kebalikan dari turunan yang berfungsi untuk menentukan daerah, volume, titik pusat, dan lainnya.  Kalau suatu fungsi f(x) dibalik menjadi f’(x) maka itu merupakan turunan. Nah, jika f’(x) dibalik lagi menjadi f(x), maka itu merupakan integral.  Sebelum ke rumus integral tak tentu, elo perlu paham konsep turunan nih. Gue kasih bayangin dikit tentang turunan secara umum. y= X3   Turunan dari soal ini berapa? dydx = 3×2  Setelah diturunkan seperti ini, lalu dikali silang. dy = 3×2 dx  d(X3) = 3×2 dx  Bisa dilihat ya, y diganti dengan X3 Nah, dari sini bisa kita simpulkan ya cara mencari turunan bentuknya akan seperti ini nih. Turunan dari X2 akan menjadi d(X2) = 2x dx Oke, konsep turunan udah ingat lanjut ke materi integral tak tentu lagi. Coba deh elo perhatikan antara turunan dan integral di bawah ini. Turunan: Sekarang kita balik, dikalikan si...