Langsung ke konten utama

Limit

 LIMIT


LIMIT

Pada dasarnya, limit adalah suatu nilai yang menggunakan pendekatan fungsi ketika hendak mendekati nilai tertentu. Singkatnya, limit ini dianggap sebagai nilai yang menuju suatu batas. Disebut sebagai “batas” karena memang ‘dekat’ tetapi tidak bisa dicapai.

Misalkan f adalah fungsi yang terdefinisi pada interval tertentu yang memuat a, kecuali di a itu sendiri, sedangkan L adalah suatu bilangan riil. Maka fungsi f dapat dikatakan memiliki limit L untuk x mendekati a, sehingga ditulis  Namun, hanya jika untuk setiap bilangan kecil ε > 0 terdapat bilangan δ > 0 sedemikian rupa sehingga jika 0 < |x-a| <δ maka |f(x)-L| <ε. Pernyataan tersebut dinamakan definisi limit secara umum.


Rumus Limit

Dalam ilmu matematika, konsep limit ini ditulis berupa: 

Maksudnya, apabila x mendekati a tetapi x tidak sama dengan a, maka f(x) akan mendekati L. Pendekatan x ke a ini dapat dilihat dari dua sisi, yakni sisi kiri dan sisi kanan. Nah, dengan kata lain bahwa x juga dapat mendekati dari arah kiri dan arah kanan sehingga nantinya akan menghasilkan limit kiri dan limit kanan.

Maka dari itu, diperolehlah pernyataan bahwa:

0 <|x-p|<δ⇔|f(x) – L|ε

Maksudnya, suatu fungsi dapat dikatakan memiliki limit apabila antara limit kiri dan limit kanan juga mempunyai besar nilai yang sama. Apabila limit kiri dan limit kanan tidak sama, maka nilai limitnya juga tidak akan ada.

Sifat Fungsi Limit Aljabar

Apabila n adalah bilangan bulat positif, k adalah konstanta, f dan g adalah fungsi yang mempunyai limit di c, maka sifat-sifatnya akan berupa:

Teorema Limit

Limit dalam bahasa umum bermakna batas. 

Definisi dari limit ini menyatakan bahwa suatu fungsi f(x) akan mendekati nilai tertentu jika x mendekati nilai tertentu. 

Pendekatan ini terbatas antara dua bilangan positif yang sangat kecil yang disebut sebagai epsilon dan delta. 

Hubungan ke-2 bilangan positif kecil ini terangkum dalam definisi limit.

Limit Matematika

Limit 0/0

Bentuk 0/0 kemungkinan timbul dalam

Limit 0
ketika kita menemukan bentuk seperti itu coba untuk sederhanakan fungsi tersebut. 

Jika itu bentuk persamaan kuadrat kita bisa coba memfaktorkan atau dengan cara asosiasi, dan jangan lupa aturan a2-b2 = (a+b) (a-b). 
Berikut adalah contohnya :


Limit ∞/∞

Bentuk limit  ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti :

Limit Tak Hingga


Rumus cepat limit bentuk  ∞/∞

Rumus Cepat Limit Tak Hingga
  • Jika m<n maka L = 0
  • Jika m=n maka L = a/p
  • Jika m>n maka L = ∞

Limit (∞-∞)

Bentuk (∞-∞) sering sekali muncul pada saat ujian nasional. 

Bentuk soalnya sangat beragam. Namun, penyelesaiannya tidak jauh dari penyederhanaan


Jika disubstitusikan x -> 1 maka bentuknya akan mmenjadi (∞-∞). 

Dan untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi



Rumus Cepat limit tak hingga

Rumus cepat mengerjakan limit tak hingga yang pertama dapat digunakan untuk bentuk soal limit tak hingga pada bentuk pecahan. 

Untuk memperoleh nilai limit tak hingga bentuk pecahan kita hanya perlu memperhatikan pangkat tertinggi dari masing-masing pembilang dan penyebut.

Ada 3 kemungkinan yang dapat saja terjadi. 

  1. Pertama, pangkat tertinggi pembilang lebih kecil dari pangkat tertinggi penyebut. 
  2. Kedua, pangkat tertinggi pembilang sama dengan pangkat tertinggi penyebut. 
  3. Ketiga, pangkat tertinggi pembilang lebih tinggi dari pangkat tertinggi penyebut. 

Rumus ke-3 nilai limit tak terhingga bentuk pecahan tersebut dapat dilihat pada persamaan dibawah ini.

Rumus Cepat Limit Tak Hingga 3
Contoh
Contoh Rumus Cepat Limit Tak Hingga 3

Nilai pangkat tertinggi pada pembilang adalah 3. Nilai pangkat tertinggi penyebut adalah 2 (m>n). Jadi, nilai limitnya adalah ∞.

Limit Tak Hingga

Fungsi limit tak hingga digunakan untuk menggambarkan keadaan limit x mendekati tak hingga atau dinotasikan dengan lim x → ∞ f(x). 

Untuk menyelesaikan limit tak hingga dari suatu fungsi aljabar, terdapat dua cara yang umum digunakan. 

Berikut gue jelaskan lebih lanjut mengenai cara-cara tersebut dan juga contoh soal limit fungsi tak hingga dan pembahasannya. 

 

Memahami Limit Fungsi Aljabar - Materi Matematika Kelas 11 184

Contoh Soal:

Memahami Limit Fungsi Aljabar - Materi Matematika Kelas 11 185
Memahami Limit Fungsi Aljabar - Materi Matematika Kelas 11 186

Contoh Soal:

Memahami Limit Fungsi Aljabar - Materi Matematika Kelas 11 188
Memahami Limit Fungsi Aljabar - Materi Matematika Kelas 11 189
Cara Menentukan Limit Fungsi Aljabar Jika Variabelnya Mendekati Nilai Tertentu
Metode Substitusi
Perhatikan contoh soal berikut!

Tentukan nilai lim  2x2 + 5x→3

Penyelesaian:

Nah ketika ditanya berapa nilai limit untuk fungsi diatas ?.

Kita menggantikan nilai x = 3 untuk variabel x pada 2x2, nah inilah yang dinamakan substitusi. Sehingga penyelesaian limit di atas secara subsitusi adalah :
lim  2x2 + 5 = 2.(3)2 + 5 = 23x→3

  • Metode Pemfaktoran

Metode ini akan digunakan apabila fungsi-fungsi tersebut dapat difaktorkan sehingga tidak menghasilkan nilai tak terdefinisi. Perhatikan contoh berikut!

Dalam contoh soal tersebut, jika x=3 maka dapat kita substitusikan menjadi f(3) = 3 akar 2 – 9 / 3 -3 = 0/0

Dengan menggunakan metode substitusi akan menghasilkan bentuk tak terdefinisikan (0/0) :

limx→ 1
x2 + 2x – 3x – 1

=

12 + 2(1) – 31 – 1

=

00

Maka harus diselesaikan dengan metode pemfaktoran :

limx→ 1
x2 + 2x – 3x – 1

=

limx→ 1
(x – 1)(x + 3)(x – 1)

limx→ 1

(x + 3)

⇔ (1 + 3)
⇔ 4

  • Metode Merasionalkan Penyebut

Pada cara ketiga ini dapat digunakan jika penyebutnya berbentuk akar yang memang perlu untuk dirasionalkan, sehingga supaya tidak terjadi pembagian angka 0 dengan 0. Perhatikan contoh soal berikut!

Contoh:

  • Metode Merasionalkan Pembilang

  • Pada cara ini, hampir sama dengan metode sebelumnya, yakni dapat digunakan jika penyebutnya berbentuk akar yang memang perlu untuk dirasionalkan, sehingga supaya tidak terjadi pembagian angka 0 dengan 0. Perhatikan contoh soal berikut!

  • DAFTAR PUSTAKA
  • https://www.gramedia.com/literasi/limit-fungsi-aljabar/#:~:text=Apa%20Itu%20Limit%20Fungsi%20Aljabar,dekat'%20tetapi%20tidak%20bisa%20dicapai
https://gurubelajarku.com/limit-fungsi/

https://www.zenius.net/blog/pembahasan-limit-fungsi-beserta-limit-menuju-tak-hingga

https://www.gramedia.com/literasi/limit-fungsi-aljabar/







Komentar

Postingan populer dari blog ini

DETERMINAN DAN INVERS MATRIKS

  Determinan dan Invers matriks 𝘿𝙚𝙩𝙚𝙧𝙢𝙞𝙣𝙖𝙣 𝙙𝙖𝙣 𝙄𝙣𝙫𝙚𝙧𝙢𝙖𝙩𝙧𝙞𝙠𝙨 𝙤𝙧𝙙𝙤 2𝙭2 𝙙𝙖𝙣 𝙢𝙖𝙩𝙧𝙞𝙠𝙨 𝙤𝙧𝙙𝙤 2𝙭3 •Determinan Matriks Determinan suatu matriks didefinisikan sebagai selisih antara perkalian elemen-elemen pada diagonal utama dengan perkalian elemen-elemen pada diagonal sekunder.  Determinan matriks hanya dapat ditentukan pada  matriks persegi . Determinan dari matriks A dapat dituliskan det(A) atau |A|. Untuk menentukan determinan dari sebuah matriks, terdapat dua aturan berdasarkan ordonya, yaitu ordo 2x2 dan ordo 3x3. •Determinan  Matriks Ordo 2x2 Determinan matriks persegi dengan ordo 2x2 dapat dihitung dengan cara berikut: •Determinan  Matriks Ordo 3x3 Determinan matriks persegi dengan ordo 3x3 dapat dihitung dengan menggunakan dua cara, yaitu kaidah Sarrus dan ekspansi kofaktor. Namun, cara yang paling sering digunakan dalam menentukan determinan matriks ordo 3x3 adalah dengan kaidah Sarrus. Langkah-langkah mencari determ...

MATRIKS

  MATRIKS   𝙈𝙚𝙣𝙪𝙧𝙪𝙩 𝙬𝙞𝙠𝙞𝙥𝙚𝙙𝙞𝙖  matriks adalah susunan bilangan, simbol, atau ekspresi yang disusun dalam baris dan kolom sehingga membentuk suatu bangun persegi. Sebagai contoh, matriks di bawah ini adalah matriks berukuran 2 × 3: karena terdiri dari dua baris dan tiga kolom.   𝗠𝗲𝗻𝘂𝗿𝘂𝘁 𝗮𝗿𝘁𝗶𝗸𝗲𝗹 lain Matriks di artikan sebagai susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehingga membentuk jajaran persegi panjang.  𝗝𝗘𝗡𝗜𝗦-𝗝𝗘𝗡𝗜𝗦 𝗠𝗔𝗧𝗥𝗜𝗞𝗦   Berikut ini merupakan jenis-jenis matriks diantaranya yaitu sebagai berikut: a. Matriks Baris Matriks baris adalah suatu matriks yang terdiri dari satu baris aja.  b. Matriks Kolom Kebalikannya dari matriks baris, matriks kolom adalah suatu matriks yang terdiri dari satu kolom aja. c. Matriks Persegi Matriks persegi adalah suatu matriks yang memiliki jumlah baris dan kolom sama. d. Matriks Diagonal Matriks diagonal adala...

INTEGRAL FUNGSI ALJABAR

  𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝗹, 𝗳𝘂𝗻𝗴𝘀𝗶 𝗮𝗹𝗷𝗮𝗯𝗮𝗿 INTEGRAL TAK TENTU   Integral merupakan anti turunan atau kebalikan dari turunan yang berfungsi untuk menentukan daerah, volume, titik pusat, dan lainnya.  Kalau suatu fungsi f(x) dibalik menjadi f’(x) maka itu merupakan turunan. Nah, jika f’(x) dibalik lagi menjadi f(x), maka itu merupakan integral.  Sebelum ke rumus integral tak tentu, elo perlu paham konsep turunan nih. Gue kasih bayangin dikit tentang turunan secara umum. y= X3   Turunan dari soal ini berapa? dydx = 3×2  Setelah diturunkan seperti ini, lalu dikali silang. dy = 3×2 dx  d(X3) = 3×2 dx  Bisa dilihat ya, y diganti dengan X3 Nah, dari sini bisa kita simpulkan ya cara mencari turunan bentuknya akan seperti ini nih. Turunan dari X2 akan menjadi d(X2) = 2x dx Oke, konsep turunan udah ingat lanjut ke materi integral tak tentu lagi. Coba deh elo perhatikan antara turunan dan integral di bawah ini. Turunan: Sekarang kita balik, dikalikan si...